Representación gráfica online de funciones matemáticas

Si estáis buscando la forma más sencilla de obtener una representación gráfica de las distintas funciones matemáticas; este es el lugar indicado para conseguirla.

Con ésta herramienta matemática online, podréis representar gráficamente, de manera muy sencilla cualquier función.

Simplemente debéis ingresar los datos necesarios, y el programa lo hace todo; y el resultado: el gráfico solicitado.

Por ejemplo, para realizar cálculos de límites online
funcion-1.jpg

Para realizar cálculo de una derivada online

funcion-2.jpg

Mientras que, si lo que estáis buscando es crear un gráfico 3D onlinegrafico.jpg

Regla de la Cadena

La regla de la cadena no es más que una fórmula para la derivada de la composición de dos funciones.

Sus aplicaciones son variadas, pero la principal es en el cálculo algebraico de derivadas cuando existe composición de funciones.

Aprendamos un poco más con el siguiente vídeo explicativo.

Condición no recíproca en la continuidad de una función

La relación no funciona a la inversa: el que una función sea continua no garantiza su derivabilidad. Es posible que los límites laterales sean equivalentes pero las derivadas laterales no; en este caso la función presenta un punto anguloso en dicho punto.

Un ejemplo puede ser la función valor absoluto (también llamada módulo) en el punto (0,0) .

Dicha función es equivalente a la función partida

\left\{\begin{matrix} x, & \mbox{si }x\ge 0 \\ -x, & \mbox{si }x<0 \end{matrix}\right.

Para valores infinitamente cercanos a 0, por ambas ramas, el resultado tiende a 0. Y el resultado en el punto 0 es también 0, por lo tanto es continua. Sin embargo, las derivadas resultan

\left\{\begin{matrix} 1, & \mbox{si }x> 0 \\ -1, & \mbox{si }x<0 \end{matrix}\right.

Cuando x \, vale 0, las derivadas laterales dan resultados diferentes. Por lo tanto, no existe derivada en el punto, a pesar de que sea continuo.

De manera informal, si el gráfico de la función tiene puntas agudas, se interrumpe o tiene saltos, no es derivable

Lista de derivadas de funciones elementales

f\left(x\right) = a f'\left(x\right) = 0
f\left(x\right) = x f'\left(x\right) = 1
f\left(x\right) = ax f'\left(x\right) = a
f\left(x\right) = ax + b f'\left(x\right) = a
f\left(x\right) = x^n f'\left(x\right) = nx^{n-1}
f\left(x\right) = \sqrt{x} f'\left(x\right) = \frac{1}{2\sqrt{x}}
f\left(x\right) = e^x f'\left(x\right) = e^x
f\left(x\right) = \ln(x) f'\left(x\right) = \frac{1}{x}
f\left(x\right) = a^x (a >0) f'\left(x\right) = a^x \ln(a)
f\left(x\right) = \log_{b}(x) f'\left(x\right) = \frac{1}{x\ln(b)}
f\left(x\right) = \frac{1}{x^n} = (x^n)^{-1} = x^{-n} f'\left(x\right) = -nx^{-n-1} = -nx^{-(n+1)} = \frac{-n}{x^{n+1}}
f\left(x\right) = \operatorname{sen}(x) f'\left(x\right) = \cos(x)
f\left(x\right) = \cos(x) f'\left(x\right) = -\operatorname{sen}(x)
f\left(x\right) = \tan(x) f'\left(x\right)=\sec^2(x)=\frac{1}{cos^2(x)}=1+\tan^2(x)
f\left(x\right) = \csc(x) f'\left(x\right) = -\csc(x)\cot(x)
f\left(x\right) = \sec(x) f'\left(x\right) = \sec(x)\tan(x)
f\left(x\right) = \cot(x) f'\left(x\right) = -\csc^2(x)
f\left(x\right) = \operatorname{arcsen}(x) f'\left(x\right) = \frac{1}{\sqrt{1-x^2}}
f\left(x\right) = \arccos(x) f'\left(x\right) = \frac{-1}{\sqrt{1-x^2}}
f\left(x\right) = \arctan(x) f'\left(x\right) = \frac{1}{1+x^2}
f\left(x\right) = g(x) \pm h(x) f'\left(x\right) = g'(x) \pm h'(x)
f\left(x\right) = g(x) \cdot h(x) f'\left(x\right) = g'(x) \cdot h(x) + g(x) \cdot h'(x)
f\left(x\right) = \frac{g(x)}{h(x)} f'\left(x\right) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h^2(x)}
f\left(x\right) = k \cdot g(x) f'\left(x\right) = k \cdot g'(x)
f\left(x\right) = g \circ h = g(h(x)) f'\left(x\right) = (g'\circ h) \cdot h' = g'(h(x)) \cdot h'(x)

Gracias a WordPress. Derivadas.es es una idea de Jesús. Si algún ejercicio, fotografía, vídeo, o cualquier material que veas en derivadas.es vulnera derechos de autor comunicanoslo por favor.
Entradas y Comentarios feeds.

>