Lista de derivadas de funciones elementales

¡Haz clic para puntuar!
(Votos: 11 Promedio: 3.9)
f\left(x\right) = a f'\left(x\right) = 0
f\left(x\right) = x f'\left(x\right) = 1
f\left(x\right) = ax f'\left(x\right) = a
f\left(x\right) = ax + b f'\left(x\right) = a
f\left(x\right) = x^n f'\left(x\right) = nx^{n-1}
f\left(x\right) = \sqrt{x} f'\left(x\right) = \frac{1}{2\sqrt{x}}
f\left(x\right) = e^x f'\left(x\right) = e^x
f\left(x\right) = \ln(x) f'\left(x\right) = \frac{1}{x}
f\left(x\right) = a^x (a >0) f'\left(x\right) = a^x \ln(a)
f\left(x\right) = \log_{b}(x) f'\left(x\right) = \frac{1}{x\ln(b)}
f\left(x\right) = \frac{1}{x^n} = (x^n)^{-1} = x^{-n} f'\left(x\right) = -nx^{-n-1} = -nx^{-(n+1)} = \frac{-n}{x^{n+1}}
f\left(x\right) = \operatorname{sen}(x) f'\left(x\right) = \cos(x)
f\left(x\right) = \cos(x) f'\left(x\right) = -\operatorname{sen}(x)
f\left(x\right) = \tan(x) f'\left(x\right)=\sec^2(x)=\frac{1}{cos^2(x)}=1+\tan^2(x)
f\left(x\right) = \csc(x) f'\left(x\right) = -\csc(x)\cot(x)
f\left(x\right) = \sec(x) f'\left(x\right) = \sec(x)\tan(x)
f\left(x\right) = \cot(x) f'\left(x\right) = -\csc^2(x)
f\left(x\right) = \operatorname{arcsen}(x) f'\left(x\right) = \frac{1}{\sqrt{1-x^2}}
f\left(x\right) = \arccos(x) f'\left(x\right) = \frac{-1}{\sqrt{1-x^2}}
f\left(x\right) = \arctan(x) f'\left(x\right) = \frac{1}{1+x^2}
f\left(x\right) = g(x) \pm h(x) f'\left(x\right) = g'(x) \pm h'(x)
f\left(x\right) = g(x) \cdot h(x) f'\left(x\right) = g'(x) \cdot h(x) + g(x) \cdot h'(x)
f\left(x\right) = \frac{g(x)}{h(x)} f'\left(x\right) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h^2(x)}
f\left(x\right) = k \cdot g(x) f'\left(x\right) = k \cdot g'(x)
f\left(x\right) = g \circ h = g(h(x)) f'\left(x\right) = (g'\circ h) \cdot h' = g'(h(x)) \cdot h'(x)

26 comentarios en “Lista de derivadas de funciones elementales”

  1. Si yo hubiera tenido esta faclidad en mi epoca hubiera sido feliz, que suerte teneis los jovenes actuales

  2. Que pena ver algunos comentarios… No se explica el procedimiento porque estas integrales son elementales, te las aprendes y cuando te las topas en un ejercicio simplemente la resuelves… Son las integrales maaaas básicas…

    Me sirvió mucho tu lista, muchísimas gracias

  3. saca la derivada de la funcion y reemplaza 0 en f(x) y en todo los que tengas x reemplaza con el numero 2 y lesto tienes la pendiente, la ecuacion de la recta la sacar con esto y=m (x-x1) m= igual a la pendiente y x1= igual a 2

Deja un comentario